Denomina-se fundamentos da matemática a uma área de estudo que abrange tanto problemas da filosofia da matemática, como da lógica e da matemática. Ela teve a sua origem nas últimas décadas do século XIX e desenvolveu-se durante as primeiras décadas do século XX, como uma resposta à crise dos fundamentos gerada pelos paradoxos[1]. Do ponto de vista lógico, tem como questão fundamental as relações entre a lógica e a matemática. Do ponto de vista matemático abrange pesquisas nas áreas de lógica matemática, teoria de conjuntos, teoria dos tipos, teoria de modelos, teoria da prova, teoria da recursão e topologia.
O matemático Georg Cantor começou as suas pesquisas estudando séries trigonométricas, mas logo foi direcionado por elas a elucidar o conceito de conjunto. Dessa maneira ele deu origem à teoria de conjuntos, desenvolvendo a primeira teoria matemática dos números infinitos e o início da topologia dos conjuntos de pontos surgida a partir das questões do Analysis Situs, agora colocadas no contexto da teoria de conjuntos[2]. Richard Dedekind, em constante contato com Cantor, utiliza os desenvolvimentos da teoria de conjuntos na sua elucidação do conceito de continuidade e na sua definição dos números reais. Como expressa Hilbert com referência a Dedekind:
"O matemática viu-se forçado a ser um filósofo, para poder seguir sendo matemático"[3]
Em outro sentido, Gottlob Frege afirma que a matemática deve fortalecer as suas bases lógicas, colocando claramente sua posição no livro Fundamentos da aritmética[4] e depois nas Leis fundamentais da aritmética[5], onde começa com um desenvolvimento da lógica matemática para passar á matemática, como maneira de justificar a unidade de ambas. Como resposta à teoria de Cantor dos ordinais transfinitos, Burali-Forti anuncia que nessa teoria pode ser derivada uma contradição, posteriormente denominada paradoxo de Burali-Forti. Em 1902, Bertrand Russell escreve uma carta para Frege na qual anuncia que no sistema das Leis fundamentais da aritmética pode ser derivada uma contradição, hoje conhecida como paradoxo de Russell, mas certas fontes afirmam que já era conhecida com anterioridade por Ernst Zermelo, pertencente ao círculo de Hilbert.
Esses paradoxos, mais outros enunciados posteriormente, geram uma crise de fundamentos (em alemão: Grundlagenkrise), na qual são questionados os métodos e a lógica utilizada pela matemática.
As respostas à crise de fundamentos desenvolveram-se em diferentes direções, formando-se trés correntes principais denominadas de logicismo, formalismo e intuicionismo.
Russell aderiu ao pressuposto de Frege da unidade de lógica e matemática e escreveu, junto com Whitehead, o monumental texto dos Principia Mathematica, no qual são desenvolvida de uma maneira contínua a lógica e a matemática. Esse aprofundamento das ideias de Frege como resposta à crise constitui a base da tendência logicista.
Hilbert não participa da ideia de unidade da lógica e a matemática, mas considera que a formalização da lógica que culmina na obra de Frege é uma parte importante de uma outra resposta. Hilbert propõe a formalização e axiomatização das diferentes áreas da matemática, para assim poder dar uma demonstração da consistência de essas teorias, ou seja, de que não é possível a derivação de contradições nelas, constituindo a base do Programa de Hilbert e o início da corrente formalista, continuada por figuras como Paul Bernays, Stephen Kleene, Haskell B. Curry, Ernst Zermelo e John von Neumann.
Em desacordo com as posições anteriores, L. E. J. Brouwer afirma que a matemática chegou a paradoxos por ter-se afastado das intuições claras e dos métodos construtivos bem definidos, de modo que os métodos da lógica clássica que pode ser aplicada sem problemas a objetos concretos e em situações empíricas, são extrapolados de maneira abusiva quando aplicados na matemática. Em particular, rejeita o princípio de terceiro excluído e as demonstrações de existência de um objeto matemático que não são construtivas[6]. Assim, Brouwer deu origem à corrente intuicionista, as vezes denominada construtivista, tendo depois em Arend Heyting um importante defensor.
Seguindo a proposta de Hilbert, Zermelo propõe em 1904 um sistema de axiomas para fundamentar a teoria de conjuntos, evitando os paradoxos conhecidos, como os de Cantor, Burali-Forti e Russell. Com contribuições posteriores, essa teoria deu lugar à Teoria de Conjuntos de Zermelo-Fraenkel com Escola, ZFC, na qual pode ser formalizada a maior parte da matemática atual.
Essa teoria é geralmente formalizada na lógica de primeira ordem com igualdade e tem como único símbolo não lógico não definido a relação de pertinência.
Muitos importantes trabalhos iniciais na área apareceram em Fundamenta Mathematicae, Journal of Symbolic Logic e no Zeitschrift für mahematische Logik und Grundlagen de Mathematik (hoje Mathematic Logic Quaterly). A editora North Holland dedica uma série denominada Studies in Logic and Foundations of Mathematic. Hoje a produção dessa área está mais especializada em diversas publicações periódicas de lógica matemática e filosofia da matemática.
Nenhum comentário:
Postar um comentário